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ABSTRACT 

The formalism of Schramm and Wasserburg (1970) for deter- 

mining the mean age of the elements is extended. Model- 

independent constraints (constraints that are independent of a 

specific form for the effective nucleosynthesis rate and Galsct,ic 

chemical evolution over time) are derived on the first four terms in 

the expansion giving the mean age of the elements, and from these 

constraints limits are derived on the total duration of nucleosyn- 

thesis. These limits require only input of the Schramm-Wasserburg 

parameter A- and of the ratio of the mean time for formation of 

the elements to the total duration of nucleosynthesis, t,/T. The 

former quantity is a function of nuclear input parameters. Limits 

on the latter are obtained from constraints on the relative rate of 

nucleosynthesis derived from the ZSZTh/W%, 2sU/"8U, and shorter- 
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lived chronometric pairs. Beca.use lBTRe may decay faster in hot 

stars than in interstella,r space, its effective lifetime may be less 

than the laboratory value; thus, using the laboratory decay rate 

gives an upper limit on Am for the ‘87Re/‘mOs pair, which gives an 

upper limit on t,he duration of nucleosynthesis. A lower limit on 

A- can be determined from the n2Th/258U pair, which then yields a 

lower limit on the duration of nucleosynthesis. The results found 

are that the eJective nucieosynthesis rate was relatively constant 

over most of the duration of nucleosynthesis and that 

0.43 5 t,/~c 0.5% From these constraints on t,/T, a nearly model- 

independent range for T,,, the age of the Galaxy, is obtained: 

8.7 Gyr C TGd s 28.1 Gyr. Improvements in nuclear and meteoritic 

data could lead to a dramatic narrowing of this model-independent 

range in the near future. Detailed Galaxy evolution models give a 

fa.r na,rrower ra.nge on t,he age, but t,he results depend on assump- 

tions about t.he specific form of the effective nucleosynthesis ra.te. 

Subject headings: abundances - galaxies: evolution - galaxies: 

Milky Way - nucleosynthesis 

I. Introduction 

Nucleocosmochronolgy employs knowledge of abundance and production 

ratios of radioactive nuclides and of the chemical evolution of the Galaxy to 

obtain information about timescales over which the solar system elements were 
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synthesized. The field may be said to have begun with Rutherford’s (1929) 

attempt to infer the duration of the time for synthesis of uranium isotopes. 

Model-dependent cosmochronology, which aszumes models of Galactic chemical 

evolution, was developed by Burbidge et al. (1957) who considered sudden syn- 

thesis and constant synthesis models and by Fowler and Hoyle (1960) who used 

exponentially decaying synthesis models. These authors relied on t,he 23?h/238U’ 

and *56u/2~ chronometric pairs. Later Wasserburg et al. (1969) Hohenburg 

(1969), Fowler (1972) and Kohman (1972) included the shorter-lived chro- 

nometric pairs *rr~~/2ssU and ‘?/in1 in their model-dependent st.udies. Also Clay- 

ton (1964) introduced t,he ‘*‘Re/ lgOs chronometric pair which held gren,t promise 

for accurate determinations of the Galaxy’s age since ia”Re has a 43 Gyr halflife, 

much greater than the suspected age of the Galaxy. The 1970’s saw the intro- 

duction of more detailed Galaxy evolution models in terms of which model- 

dependent cosmochronology could be further studied (e.g. Talbot and Arnett 

1973; Tinsley 1975, 1977, 1980; Ostriker and Thuan 1975; Hainebach and 

Schramm 1977). Work in model-dependent nucleocosmochronology continues in 

the framework of both the exponential model for nucleosynthesis (e.g. 

Thielemann et al. 1983a, 1983b; Thielemann 1984; Thielemann and Truran 1985) 

and more detailed nucleosynthesis models (e.g. Yokoi et al. 1983; Clayton 1984a, 

1984b, 1984c). 

Despite the considerable amount of work done on nucleocosmochronology, 

many uncertainties in the nuclear and meteoritic data at present preclude aceu- 

rate conclusions about the Galaxy’s age. For the Re/Os chronometric pair, astra- 

tion may significantly increase the ‘=Re bdecay rate over the laboratory rate 
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(Takahashi and Yokoi 1982; Yokoi et al. 1983), thereby greatly affecting Galaxy 

age determinations from this pair. Furthermore, the low lying excited nuclear 

state of lmRe at 9.8 kev complirates the subtraction of s-process ‘*‘OS from the 

total '"OS abundance (Fowler 1973; Holmes et al. 1976; Wooslcy and Fowler 

1979) as do possible s-process branchings in the W, Re, and OS region (Arnould 

1974; Arnould et al. 1984). As the r-process only abunda,nce of I"OS is required 

for use of the Re/Os pair for cosmochronology, the two above uncertainties make 

accurate Galactic age conclusions from this pair difficult. Also, &delayed fission 

and neutron emission may greatly affect the actinide production ratios 

(Thielemann et al. 1983a, 1983b; Meyer et al. 1985), thereby making age predic- 

tions from those pairs change drastically from earlier predictions. We discuss 

these nuclear data uncertainties and also meteoritic data uncertainties in some- 

what greater detail in section VII of this paper. 

Assumptions about the model for Galactic chemical evolution are also a 

source of error in age estimates for the Galaxy. If the wrong model is chosen, 

factor of two or so errors may find their way into age determinations. For this 

reason we may turn to model-independent cosmochronology, which studies those 

cosmochronological conclusions tha,t may be made about the Galaxy’s age 

without reference to a model for Galaxy nucleosynthesis. Schramm and Wasser- 

burg (1970; hereafter SW) showed that the main thing that nucleocosmochronol- 

ogy can give us independent of Galactic evolution model is the mean age of the 

element,s, which provides us with a lower limit on the Galaxy’s age. We may also 

ask whether it is possible to obtain a model-independent upper limit to the 

Galaxy’s age. If so, then a model-independent range will be available as a 
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framework within which more model-dependent work may be considered. 

It is the goal of this paper, then, to develop a,s model-independent a ra,nge 

for the Galaxy’s a,ge as possible that takes all nuclear and met,eoritic data uncer- 

tainties into account. As the mean age of the elements provides a natural, 

model-independent lower limit on the Galaxy’s age, our major task is to obtain a 

model-independent upper limit. We derive such an upper limit in section IV 

from an expansion of the equation giving the mean age of the elements in 

moments of the normalized effective nucleosynthesis rate made in section IlI. 

This limit depends only on tY/T, the ratio of the mean time of formation of the 

elements to the total duration of nucleosynthesis, and on model-independent 

data. In section V we show that the *“Th/*S%U, naU/zsaU, and 244Pu/Zs8u chro- 

nometric pairs can give us constraints on the relative rate of nucleosynthesis over 

the history of the synthesis of the solar system material. In section VI we use the 

results of section V to derive limits on t,/T which then allow us to derive nearly 

model-independent limits on the Galaxy’s age. Section VII discusses input data 

and uncertainties in these data. In section VIII we present our results and in sec- 

tion IX our conclusions. 

II. The Basic Equations and Galaxy Evolution Framework 

The general equation governing the time evolution of the abundance N, of 

nuclide i in the interstellar medium of the Galaxy is (SW) 

dN(r,t) 
dt 

= -X,N,(r,t) + B(r,N,,t), (2.1) 

where Ai is the decay rate for nuclide i and B(r, N, ,t) is the generalized 
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production and destruction (that is, destruction by means other than radioactive 

decay) function. To be useful for nucleocosmochronology, equation (2.1) must be 

simplified by means of a Galactic evolution model. A general model is that of 

Tinsley (1975); see also Hainebach and Schramm (1977) and Symbalisty and 

Schramm (1981). The result of this model is that equation (2.1) is linearized: 

dNi(t) - = -X,N,(t) - w(t)N,(t) + P,+(t). 
dt 

w(t) is a time-dependent parameter representing the rate of movement of metals 

into and out of the interstellar medium for reasons other than decay, $jt) is the 

amount of mass going into stars per unit time, and P, is the number of nuclei pro- 

duced per unit mass going into stars. It should be noted that in going from equa- 

tion (2.1) to equation (2.2) we have assumed that the history of material going 

into the solar system was spatially homogeneous and that the instantaneous recy- 

cling approximation holds. 

It is now possible to solve for the abundance N, of nuclide i at a given time 

by integration of equation (2.2). We do this in the context of the scenario for 

evolution of the material making up the solar system shown in Figure 1. In Fig- 

ure 1, T is the time of the last event contributing to formation of the elements 

going into the solar system, A is the time interval between this last nucleosyn- 

thetic event and the solidification of the solid bodies in the solar system, and 

t,, ( = 4.55 x 10’yr) is the age of the solid bodies in the solar system. It is clear 

that, in this scenario, A represents a period of free decay for the elements. Since 

the meteoritic material is a closed system after T+A, however, it gives abun- 

dances at times as early as T+A with minimal uncertainty due to chemical 
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fractionation. Integration of equation (2.2), then, for t.=O to t=T followed by 

free decay over an interval A yields 

N,(T + A) = Pi exp(-x,A) exp(mXiT-v(T)) J$(t)exp(XJ + u(t))dt, 
0 

where 

v(t) = iw(W 
0 

(2.3) 

(2.4) 

and we have assumed Pi to be constant in time. 

Equation (2.3) is the point of departure for the rest of this paper. 

III. Expansion in Moments 

The abundance N,(T+A) in equation (2.3) is dependent upon the effective 

nucleosynthesis rate +e”; therefore, information is needed about the chemical evo- 

lution over the nucleosynthesis interval T before equation (2.3) can be solved. 

SW have shown, however, that useful constraints on the Galaxy’s age can be 

obtained, independent of any information on Galaxy evolution, through expan- 

sion of the equation for N,(T+A) in moments of the production function about 

the mean age. We proceed in analogous fashion, using the effective nucleosyn- 

thesis rate +e” in place of SW’s p(r). 

We begin by defining Q(t), the normalized effective nucleosynthesis rate as 

(3.1) 

where < $>, the average effective nucleosynthesis rate, is defined as 
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(3.2) 

In this case, equation (2.3) becomes 

N,(T + A) = P, T <$I> exp(-i,A) exp(-X,T u(T)) ;@)e+dt. 
0 

(3.3) 

Now, with Tinsley’s (1975) definition of the mean time for formation of the ele- 

ments 

t, zs ,,‘,> !W’e’at = &i+(t)dt. 

we can write 

N,(T + A) = P, T<$> exp(-X,A) exp(-u(T) exp(-X,(T - t,)) jb(t)e”‘(“3dt. (3.5) 
0 

Analogously with SW, we expand equation (3.5) in moments of the normalized 

effective nucleosynthesis rate b(t). This yields 

N,(T + A) = P, T<$> exp(-X,A)exp(-Y(T)) 11 + a,], (3.6) 

where 

(3.7) 

and ho, the nth moment of #(t) about t,, is 

T 

tin I j(t - t,)‘Wt)dt. 
0 

(3.8) 

If we divide our expression for Ni(T + A) in equation (3.6) by the corresponding 

one for a different nuclidc, nuclide j, and take the natural logarithm, we obtain 
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T _ t = I~I(PI/PJ)/(NI(T + A)/N,(T + A))1 
Y 

xI-xJ 
-A+ (3.9) 

With the convenient definition of the one event age AT, 

A.nnx = Inl(PG’j)/(Ni(T + A)/Nj(T + A))1 
u - 

x,-xJ 

= Wi,j) , 
bxJ 

we find 

1 + !5i 
T-t,=Ar-A+++$ 

I J J 

(3.10) 

Equation (3.11) is exactly analogous to equation (6) of SW. The difference 

between the two is that p(t) in SW lacks the factor eV contained in b(t) (equation 

(3.1)). This difference shows up in the expansion of equation (3.11) to 4th order 

in fi, 

@I + T-t,=Ap-A+ 2 xJ)h + h: + hhJ + x&h + 

6 

+ +(+ - d)( l!&+ (3.12) 

The u(t) dependence is now contained in the p’s a.s opposed to being contained in 

the coefficients of the P’S in SW. Also t, replaces SW’s <r>. 

Since p. is essentially proportional to T’, for long-lived chronometers 

(XT-ccl) equation (3.11) reduces to 

T-tfiA--A, (3.13) 

which is the long-lived limit obtained by SW, with t, in place of <r>. Equation 

(3.13) makes sense because a sufficiently long-lived chronometer sees nucleosyn- 

thesis as a single event at its mean age t,. Clearly, then, the moment terms in 



- lo- 

equation (3.12) represent corrections to the long-lived limit due to the finite life- 

times of the chronometers in question and Galaxy evolul.ion. 

IV. Model-Independent Constraints 

Calculation of T - t, from equation (3.12) requires knowledge of the various 

p’s, which in turn require knowledge of 4(t) and T. These, however, are parame- 

ters we are trying to det,ermine. In the long-lived limit, however, equation (3.13) 

shows that we need no information on $(t) or T to calculate T - t,. This is, of 

course, the significance of the long-lived limit. Meyer and Schramm (1985), how- 

ever, have shown that the supposedly long-lived chronomet,ric pair 292Th/~U may 

not be sufficiently long-lived that equation (3.13) holds, although it probably does 

for ‘87Re/1870s. Thus comparisons between their respective mean ages should be 

made with caution. In any case, it is clear that we must know (or at least 

suspect) that a chronometric pair is long-lived before we use equation (3.13). 

This, however, requires comparison of T - t, calculated from equations (3.12) and 

(3.13); thus, we are a.gain confronted with the dilemma of ha.ving to know 6(t) 

and T before calculating them. 

The common way out of this dilemma is to assume some 4(t) (i.e. Galaxy 

evolution model). The results thus obtained are clearly model-dependent. We 

wish to attempt a solution to the problem that is as model-independent as possi- 

ble. 

Before attempting t,o determine upper limits on T, we note that since the 

higher moment terms in equation (3.12) tend to increase T-t, over A- A (see 
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e.g. Meyer and Schramm 1985), A-- A provides a lower limit on T, that is, 

T>A- -- A. (4.1) 

If we know t,/T, we can push this lower limit up to 

T 2 (1 - ;)-I (A- - A). (4.2) 

In section VI we will derive limits on t,/T. 

Let us now consider possible upper limits on the p’s defined in equation (3.8). 

In the case where n is even, G, will be maximized for a 4(t) that has its production 

as far as possible from t=t,. We are thus led to conclude that the normalized 

effective nucleosynthesis rate that gives the largest possible p. is of the form 

4(t) = Cs(t) + DS(t -T). (4.3) 

The coefficients C and D are determined from equation (3.4) and normalization, 

which yield 

D+L (4.4) 

and 

C=l-D. 

Substitution of equation (4.3) into (3.8) and integration yield 

(4.5) 

$ = (1 - D)Dn + D(l -D)‘, (4.6) 

since n is even. Maxima of equation (4.6) are those D satisfying 

nD’-‘-(n+l)D’+(l-D)“-nD(l-D)O-‘=O. (4.7) 
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For n=2, D=l/Z. For n=4, D=1/2fl/JrZ. These give 

and 

l!i<L 
T4 - 12 

(4.8) 

(4.9) 

In t,he case where n is odd, F. measures the asymmetry of tie” a,bout t=t,. It 

is not as clear for this case wha.t the maximizing shape of tie” would be. In the 

appendix we are a,ble to make general arguments that result in a limit 

5, 1 
TS -13.1 

Alternatively, we may aga.in use equation (4.3). For n odd, we find 

F = (D - 1)D’ + D(l - D)n. 

The maxima now occur for D satisfying 

For n=3, D = l/%1/~%, which yields 

“s, 1 
T3 “10.4’ 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

The limit in equation (4.13) conta,ins that in equation (4.10), and, hence we will 

use it. 

We now substit,ute equations (4.8), (4.9), a,nd (4.13) into equa,tion (3.13) to 

get 
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T-t,s(A-- 1 5 A) + ,(X, + XJT* + &: + X,X, + Xj2)TS + 

+&;;;:‘)T’+ . . . . 

where we have used t,he fact that &Z 2 pr/6 - p2*. Equation (4.14) can be solved 

iteratively if the chronometers allow the sum on the right hand side to converge 

sufficiently rapidly and if t,/T can be estimated. This is best done by writing 

T - t, = (A- - A)(1 + 6). (4.15) 

L is the sum of all of the higher moment terms in the expansion in equation 

(4.14). Substitution of equation (4.15) into equation (4.14) yields 

f S $1 - +)-‘(A, + X,)(A- - A)(1 + r)*+ &(I - +(A: + X,X, + XF)(A- - A)*(1 + 6)” + 

+ &(I - +( ;I 1 ;f )(A- - A)“(1 + 6)’ + (4.16) 

An upper limit on T is thus 

T 5 (1 - $)-‘(A- - A)(1 + L). (4.17) 

As mentioned above, in section VI we will see that limits on t,/T can be 

estimated. 

V. Galaxy Evolution Constraints 

In the preceding sections, we have seen that we can get upper limits on T 

provided we know t,/T. In this section and the next, we derive a means of 

estimating t,/T. 



- 14- 

It is possible that certain radionuclides are sufficiently short-lived that essen- 

tially all of the nuclei produced prior to some time t=T make no contribution to 

the abundance of that nuclide at t=T+A. Assume this is true for nuclide i. In 

this case, we can write equation (2.3) as 

N,(T+A) = Pp-i’he-“)j:~eYe-~‘T~)dt, (5.1) 
;; 

where Y, has replaced zero as the lower limit on the integral. We now define an 

average nucleosynt,hesis rat.e <$>,.i over the interval <lt<T: 

~w3-)dt 
<kc-;;.,= IT 

Ce-~wdt 
(5.2) 

This average rate is exact,ly analogous to the average rate defined in equation (14) 

of Reeves and Johns (1976). The difference is that the integrals in equation (5.2) 

above begin at. t=Y, instead of t=O. By varying {, we are able to average tie” 

over a variety of intervals. 

Substitution of equation (5.2) into equation (5.1) and integration yield 

Ple-AiAe-u(=)< rD> ; ,( 1 - e .ii(T.FJ 
) 

N!(T+A) = 
11 

We can express T - 5 as some number (I, of half-lifes of nuclide i, that is, 

T - rs = a,,,. 

We are thus able to write 

Ni(T+A) = 
?pe-~~< $><,, 

h 

(5.3) 

(5.4) 

(5.5) 
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by the definition of the half-life. In the case where we choose 6 = 0, however, it 

is more convenient to stay with equation (5.3) in the form 

Nr(T+A) = 
Pie2’~e-L~T)<$>o., 

Xl 
(, y), (5.6) 

which might be called the R,eeves and Johns form. 

If we have two nuclides i and j, with two different ii a,nd ii, respectively, we 

can choose 6 and { such that we average over the same number of half-lifes for 

each, that is, oi = a,. In this case, we find from equation (5.5) that 

<-<,I pi - $)A x, 

c$>;;, = R(i,j) x’ 

where R(i,j) is the standard nucleocosmochronolog input parameter defined in 

equat,ion (3.10). 

The significance of equation (5.7) is two-fold. First, it is independent of T. 

Second, it is independent of the number of half-lifes we average over since we 

average over the same number of half-lifes for i and j. 

We now make the convention that nuclide i is shorter-lived than nuclide j, 

that is, r, c 7,. The interpretation of equation (5.7) is then simple. If 

c*>+/<@>;;, is approximately one, then tie’ was roughly steady over a few 

times 7,; if <ti>;,,/<$>;;, <I, then tie” was generally falling over a few times 7,; 

and if <ti>;;J<~>;, >I, then @eV was generally rising over a few times r,. 

In all of the above we have assumed that essentially all of the nuclei pro- 

duced prior to t = r have decayed by t = T. This is not the case for the long- 

lived nuclei, which may have half-lifes comparable to or even greater than T. 
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Clearly, in this case, we must use equation (5.6) for nuclide j, which yields 

<@>,,I 

<ti>OJ 

_ ,(i;-“F (1 _ e-v) 2, 

R(Lj) (1 _ (+,y XI 
(5.8) 

This depends on both a, and T. If we allow a, to grow, eventually airi will be 

greater than T, and we will then have to use 

<c-o,1 
cd’>OJ = 

e(\i-“I)* (1 _ e-+T) x, 
R(i,j) (1 . e-iiT) q’ (5.9) 

which is equation (15) of Reeves and Johns (1976) multiplied by a factor e (hi - rp 

If we wish to compare short- and long-lived chronometers, we are forced to 

use equation (5.8). Equation (5.7) is still useful, however, since it gives an upper 

limit on <tiBf,,/<$+ independently of T. This is clear since the largest 

(1 - e-T)/(1 - e-i’T) can be is unity. Correspondingly, equation (5.9) gives the smal- 

lest possible value, for a given T, for the ratio <+>,,,/<ti>;l, since equation (5.9) 

is the limiting case of equation (5.8) for large a,. 

VI. Constraints on t,/T 

With constraints on $e” available over a variety of time intervals, we now 

use this information to constrain t,/T and to provide a means of solving for T 

directly. 

i) Galaxy Evolution Constraints 

We define the parameter r(i,j) a,s the ratio of <$>i/<$>i, where <$>,/<$>, 

is given by equation (5.7), (5.8), or (5.9). Let us now assume a set of m 
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chronometers. We label our longest-lived chronomet,er by i=l, t,he next longest- 

lived by i=2, and so on to the shortest-lived labelled i=m. It is now possible to 

develop Galaxy evolution constraints. 

To begin, let us assume we have two chronometers. r(2,l) is the ratio 

<uj>+/<$>,;,,. If we average tie’ for nuclide 1 over all of T, then a, = T/r,. 

Now let us take az = (I~, then r(2,l) represents approximately the ratio of $e” over 

or half- lifes of nuclide 2 to llfeY over (I~ half-lifes of nuclide 1. We thus assume 

tie” = r(l,l)=l (in some arbitrary units which do not matter since we will eventu- 

ally normalize to get #(t)) from t=O to t=t, 3 ~~(7, - r2) and @” = r(2,l) from 

t=tl to t=T. 

The above picture of a single step Galaxy evolution function is clearly quite 

crude. It does give, however, at least some indication of the overall trend of $e” 

over time. Moreover, we improve the “resolution” by including more chronome- 

ters. The constraints we get, by complete analogy with the two chronometer 

case, are 

$eY = r(i,l) for t,_, < t <t, (6.1) 

where i runs from 1 to m, the total number of chronometers, t, is defined by 

t, = a1(rx - 71 + I), (6.2) 

and ~1, = T/r,, as before. The boundary condition on t, is t,,,=T, which translates 

to r, + ,=o. 
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ii) Constraints on t,/T 

From the above constraints we calcula.te the normalized effeclive nucleosyn- 

thesis rate over t,. i < t 5 t, (see equation (3.1)): 

6 = 
r(i,l)rl 

T&j,l)(r, - q+l) 
(6.3) 

J=l 

and the ratio of the mean time for formation of the elements t, (see equation 

(3.4)) to T 

L ?+I)*- (7, - #I 
-=- 
T 2 

rlcr(j,l)(q - rJ+l) 
?-I 

(6.4) 

In the case of steady synthesis, r(i,l)=l and, hence, 24, = l/T and t,/T=1/2, a~ 
o-1 

expected. 

Use of the upper limits on r(i,l) from equation (5.7) gives an upper limit on 

t,/T. We note the self-consistency of the approach in this case since these max- 

imum r(Q) a,re all calculated hy averaging over the same number of half-lifes 

while t,/T is also computed by looking over the same number ((I~) of half-lifes for 

each nuclide. Furt,hermore, we expect a, to be great,er than 1.0 since we will take 

r1 = r of ZQTh = 14.1~yr and T may be as large as 19Gyr (Meyer and Schramm 

1985) or larger; thus, it makes sense to average over the same number of half-lifes 

for all nuclides, that is, it makes sense to use equation (5.7) to compute the max- 

imum r(i,l) 
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Where it does not make sense to avera.ge over the same number of half-lifes 

is the case for the lower limit on t,/T. T may be as small as 1.8 Gyr (kfeyer and 

Schramm 1985); therefore, n,=0.13 if rl = r of *‘*Th. In this ca,se we would only 

be avera,ging tie” over 0.13 half-lifes of the various nuclides. This would not be 

appropriate for a nuclide like Y’u for which r=O.O8Gyr and which, consequently, 

has 22.5 half-lifes in 1.8Gyr. Since this would give an overestimate for 

<$>;;,,/c$>;;,, and we want absolute lower limit,s on the r(i,l) to get a lower 

limit on t,/T, we must either restrict our set of chronometers to ones for which r, 

< T or find an alternative means of getting a lower bound on t,/T. Since the 

lower bound on T of 1.8Gyr limits us to the two chronometers *“PU and *W 

(rQJa=0.70Gyr), and since there are fairly large uncertainities in the data for 244~~, 

we find it a,dvisable to seek an alternative method for determining t,/T which can 

use the other, less uncertain, chronometers. 

Such an alternative method is to consider two chronometers in the single 

step function of section Vi. We relax the constraint that the time intervals over 

which we integrate this model are o 5 t < t, and t, 2 t 5 T. Instead we replace t, 

by aT, where o 5 a 5 1. Normalization yields 

1 
m(t) = T[a + r(2,1)(1 - a)] 

for 0 5 t 5 aT 

and 

r(V) 
4(t) = T[a + r(2,1)(1 - a)1 for aT<t<T. 

This 4(t) yields a mean age 

(6.5) 

(6.6) 

L 1 Ja’ + q&1)(1 - a’)[ -=- 
T 2 la + r(2,1)(1- a)] (‘5.7) 
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Let us now find extrema of t,/T at 

a = r(Z,l) - m 
r(Z,l) - 1 ’ 

since o 2 a 2 I. Substit,ution of equation (6.8) back into equation (6.7) yields 

L -= r(2,l) - J;lz;I 
T r(2,l) - 1 (6.9) 

We can thus identify a with t,/T. The smallest possible value for r(2,l) (calcu- 

lated from equation (5.9)) then gives a lower limit on t,/T. We will compare the 

results from equations (6.4) and (6.9). We may also use equation (6.9) to obtain 

upper limits on t,/T if we take maximum values for r(2,l). 

iii) Explicit Constraints on T 

From the Galaxy evolution constraints developed in the last two subsections, 

we are also able to solve equation (2.3) directly. Using equation (6.1), we find for 

the chronometric pair i and j 

N,(T + Al P, 
2 r(k,l)(ev’ - e’+-l) 

NJ(T + A) = i;;” 
+, Ai,Ae<Xi $)T& k1 

Xl m ~~(“.l)(,‘i’n-.*f”-1)’ 
(6.10) 

If we use equation (6.2) and assume a, = T/r,, we obtain 

I;=, x1 &ii - Ai)A 
EC-.-- 

xJ W,j) 
(6.11) 

This can be solved numerically for T. Use of maximum values for the r(k,l)‘s 

gives an upper limit on T. We may alternatively take tl = aT and t: = T for the 
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single skp const,raints of equations (6.5) a.nd (6.6). These yield 

(e+ -&T _ e-“i=) + r(2,1)(1 -- e+ -w) = 5 pi - L;)A 

(e 
<I -drjr _ em’j’) + r(2,1)(l _ e<l -@jT) AJ R(C) 

(6.12) 

We can solve this numerically for limits on T. 

VII. Data 

The accuracy of any constraints in nucleocosmochronology rests fundamen- 

tally on the accuracy of the data. In Table 1. we present the best current esti- 

mates of decay rates, the ratios R(i,j), and resulting A- ‘s for the Re/Os, Th/U, 

U/U, and Pu/U pairs. 

i) Re/Os 

The long-lived chronometric pair ‘s7Re/‘870s, first proposed for study by Clay- 

ton (1964), is unique because lmOs is stable and has no direct contribution from 

the r-process since it is shielded from o-decay from below by 18?Re. Clearly, then, 

the formulae required to derive R(187,187) (see equation (3.10)) are different from 

those of other chronometric pairs. 

R(187,187) is given by (Schramm 1974) 

R(187,187) = 1 + 2, (7.1) 

where (1*70s), is the cosmoradiogenic contribution to the 187~s abundance, that is, 

the contribution arising from B-decay from ‘“Re. The rest of the 1870~ comes from 

the s-process; hence, we denote this contribution (‘m~~)s. Since the l*s~s is not 

shielded and, consequently, not changing after nucleosynthesis, we can write 
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Pw ‘“OS ww, -=- 
‘rnOoS ‘%os -Lsag,. 

By use of the so-called “local-approximation” in the s-process 

(‘“We k4sok.v = (1aso4, bbl)SOkeV~ 

we may write 

YW, ‘“OS 
lrnOS 

= - - I,, 
‘@OS 

after Yokoi et al. (1983) where 

f.=(““) x r, x fb, 
U’s7 Ia 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

The U’S are neutron capture cross sections measured in the lab for lsa~s and ‘“OS, 

f, is a factor allowing for conversion from lab cross sections to cross sections ther- 

malized to a temperature of 30 keV with the nuclei starting at that level of exci- 

tat,ion, t.hat is, at condit,ions appropriate for the s-process inside stars, and fb is a 

factor allowing for s-process branching in the W-OS region. Normalization of 

equation (7.4) by 1saOs/‘8’Re then gives the required ratio (lBO~),/lmRe. 

A major uncertainty in the Re/Os pair that limim its use is that astration 

great,ly enha,nces the 18?Re pdecay rate over the lab rate by bound stat,e decay 

(Takahashi and Yokoi 1983; Yokoi et al. 1983). To compute the Galaxy’s age 

accurately from this pair thus requires a detailed Galaxy chemical evolution 

model to determine the amount of time rnRe spends at vxious temperatures 

inside stars as well as an accurate estimate of xlm as a function of temperature. 

Others have followed this tack (Yokoi et al. 1983). We will instead notice that 

the effect of astration is to increase x,,, so t.hat use of t,he lab xlBi in conjunction 
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with equations (3.10) and (7.1) provides an upper limit on ATLu. 

For the Re/Os pair, X, = x,,, and X, = O; hence, equation (4.16) becomes 

L 2 $(I - ;)-‘(InR(187.187))(1 + t)’ + &(I - ;)4(lnR(1R7,187))Z(I + c)” + 

+ A(1 - ~)4(lnR(187.187))~l + L)’ + (7.6) 

where we have made use of the fact that A-- A=A- (since A 5, 0.2Gyr (Sym- 

balisty and Schramm 1981)) and of equation (3.10). 

The significance of equation (7.6) lies in the fact that when we calculate the 

higher moment terms for Re/Os, these terms tuill be independent of x,,. This 

puts us in the unique position of knowing the maximum possible corrections to 

T - t,, as derived from AZ,, - A, better than we know AZ,, - A itself because of 

the uncertaint.y in the effective x,,. Furthermore, if we can show that the higher 

moment terms are all small, then the ‘mRe/‘gOs pair behaves as if it is long-lived, 

independent o/ A,~,. 

The remaining uncertainties in the ‘mRe/‘“Os pair are the uncertainty in the 

amount of s-process branching in t.he W-OS region (I,) (Arnould 1974; Arnould et 

al. 1984) and the uncertainty in the factor I, (Fowler 1973; Holmes et al. 1976; 

Woosley and Fowler 1979) in equation (7.5). Yokoi et al. (1983) estimate that the 

combined uncertainties in fD and I, yield a range of 0.41 5 r, 5 0.58. hnould et al. 

(1984) a~rgue, however, that s-process branching uncertainties lead to much larger 

ranges 0.18 5 4 5 0.69 for 1 s f,c 1.15 or 0.15 2 r,so.sg for 0.81 c I < 0.83. N CT- We 

could thus take an extreme range 0.15 s f. 5 0.69. In what follows, we will prefer 

0.41 ( f, 5 0.58 but will also consider the effect of the 0.15 f, ( 2 0.69 range. 
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The other information we need to calculate R(187,187) are the meteoritic 

ratios (‘“‘Os/‘~Os)T +., and (‘ssOs/‘mRe)T+ b A fairly recent,, self-consistent determi- 

nation of (‘8’06/1aOs)~+A and (‘R7Re/‘HdOs).r+A is that of Luck et al. (lOSO), who 

obtain 0805~0.011 and 3.2(*10%) for these two numbers, respectively. With 

these numbers, we find 1.06 s R(187,187) s 1.14 for the range 0.41 s r. c 0.53. For 

the extreme range 0.15 5 f, s 0.69 we End 1.03 5 ~(187,187) 5 1.~ 

ii) Th/U 

The n*Th/“8U production ratio is quite uncertain. Symbalisty and Schramm 

(1981) give the wide range l.nTf. Thielemann et al. (1983a) include pdelayed 

fission in their calculations of P,,/P 2(8 and End a value of 1.4. Meyer et al. (1985) 

End in a self-consistent calculation less hdelayed fission than Thielemann et al. 

which suggests a higher production ratio; thus, we will take 1.4 as a lower limit 

on the production ratio. Because the new value for the sum of the a-decay and 

bdecay branching ratio for 260Cm (a progenitor of “U) is 35% (Schmorak 1981), 

up from the value of 10% used by Seeger and Schramm, we lower the Seeger and 

Schramm value from 1.9 to 1.8. We then use this 1.8 as an upper limit on 

PzJz/Pz58 since the original calculations of Seeger and Schramm, included no & 

delayed fission and some bdelayed fission undoubtedly occurred. We will also 

take 1.6 as a compromise best value. We note, however, that the calculation of 

Meyer et al. did not include fission barrier penetration so that a lower best value, 

nearer the value of Thielemann et al., should perhaps be favored. 

SW argue tha,t the present solar system value for 2JZTh/z81: is 3.9. They note 

that terrestrial lead isot.opic ra.tios evolved from a *32Th/?38U ratio in the range 3.7 
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t,o 4.1 with 3.9 as the best value. Since this ratio seems to apply to essentially all 

rocks of all ages, they conclude that it is a ratio characteristic of the earth as a 

whole and is the one consistent with the standard 4.55 Gyr age of the solar sys- 

tem. They also note that the lead in meteorites such as Nuevo Laredo evolved 

from a 232Th/238U ratio identical to the terrestrial lead ratio. Cl chondrites, how- 

ever, give perhaps the most primative solar system abundances not obtainable 

from observations of the solar atmosphere (Anders 1971). We have data on tho- 

rium abundances in the Cl chondrites Orgueil, Ivuna, Alais, and Tonk 

(Tatsumoto et al. 1976; Morgan and Lovering 1968). From this set we neglect 

those values of Morgan and Lovering which are anomalously high since they 

probably resulted from contamination (Anders 1986). We also have data from 

the same set of meteorites on the uranium abundances (Tamumoto et al. 1976; 

Krahenbuhl et al. 1973; Morgan and Lovering 1968; Reed and Allen 1966; Reed, 

Kogoshi, and Turkevich 1960). We have again neglected those values of Morgan 

and Lovering which are anomalous. Individual meteorite (at.omic) ratios we find 

from the Morgan and Lovering and Tatsumoto et al. data are 4.10 (Alais); 2.36, 

3.80, and 3.69 (Ivuna); 3.49 and 4.41 (Orgueil); and 2.98 (Tonk). The wide 

spread shows that chemical fractionation probably played a large role in the 

Th/U ratios in Cl chondrites. From averages of the two sets of dat,a from all 

Eve sources (nine thorium measurements and 16 uranium measurements), we End 

an abundance ratio of 3.72. This value is contained within the SW lower limit; 

hence, we choose 3.7 as our lower limit on the Th/U ratio. We also choose 4.1 as 

an upper limit since it contains the 3.9 value from leads and the values from Eve 

of the six individual meteorite measurements. Since the Th/U ratio is not an 
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isotopic ratio, simply dividing Th abundances in Cl chondrites by corresponding 

U abundances may not take into account differences due to t,hr different chemical 

natures of the two elements, as possibly evidenced by the variations seen in the 

individual Cl chondrite measurements. The ratio obtained from terrestrial leads, 

however, integrates over variations found in the Th/U ratio measured directly in 

rocks (SW). As a consequence, we still take 3.9 and believe it is the best and 

most consistent value for cosmochronological purposes. Our present day 

=Th/2s%v ratio is thus 3.9H.2, the SW range. 

iii) U/U 

The value given by Symbalisty and Schramm (1981) for the production ratio 

of nsU/Z3%U is 1.54,b +Os, SW give the range 1.5!&j4. Thielemann et al. (1983a) get 1.21, 

which is easily contained in both of the above ranges. The calculation of Meyer 

et al. (1985) as mentioned above, gives less delayed fission than the calculation of 

Thielemann et al., which indicates a production ratio closer to 1.5 and a lower 

limit given by the Thielemann et al. value; thus, the Symbalisty and Schramm 

lower limit is probably too low. Furthermore, since the effect of delayed fission is 

probably to decrease P,,,/P,, from roughly 1.5, we expect the Symbalisty and 

Schramm upper limit to be too high. We thus choose the SW range as the best 

range for this production ratio. 

The terrestrial abundance ratio for the *8a~/*38~ pair is quite well known. 

The st,andard value from uranium-bearing ores is l/137.88. Cowan and Adler 

(1976) in their precision mass spectrometry of a large number of ore samples from 

around the world found an approximately bimodal distribution of ?l/=U around 
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the standard value and around roughly l/137.95. The latter value was derived 

mainly from ores from the Colorado Plateau, which may have been subject to 

chemical differentiation of the U isotopes, although Cowan and Adler found at 

the time of t.heir paper that insufficient data existed to make that conclusion. In 

any case, the results we may derive from Cowan and Adler’s 236~ weight percen- 

tag=, I aaU % = l/(137.88$&$), are contained in the value 1/(137.88hO.l4), given in 

Barnes et al. (1972), which includes lunar data. 

Arden (1977) found large variations, up to about 29%, in 23aU/258U in a 

variety of chondritic meteorites (including Allende). Tatsumoto et 4. (1980) and 

Tatsumoto and Shimamura (1980) found approximately 7% variations in 215L:/‘38LJ 

in the Allende meteorite, which they interpreted as evidence for the presence of 

live “‘Cm at T + A which then fractionated to varying degrees from the U to give 

the variations observed. This *r’Cm may have been injected into the solar system 

material in the same event that contributed the live *‘AI, ‘O’Pd, and ‘9. Chen and 

Wssserburg (1981) however, find that 2s6~/2W ratios from Allende inclusions 

agree quite well with the standard value. From these results, they conclude that 

live *“Cm may indeed have been present at T + A, but only at low levels so that 

Cm/U fractionation would have had a negligible effect on the U/U ratio. The 

agreement between the Chen and Wasserburg values and the standard value and 

the possibility of isotopic contamination in the analysis of Tatsumoto et al. 

(Symbalisty and Schramm 1981) lead us to conclude that the present day Ua~/ZS8U 

solar system abundance ratio is 1/(137.88~0.14), the concordant terrestrial-lunar 

value. 
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iv) Pu/U 

Symbalisty and Schramm give n.n$$ for the 244Pu/zs%u production ratio. This 

chronometric pair is extremely sensitive to delayed fission, however, as evidenced 

by Thielemann et al.‘s value of 0.12. The results of Meyer et al. tend to indicate 

a value somewhere in between these two ranges. We will accept for the present a 

large uncertainty in the 244~u/258u production ratio and, thus, take the range 

0.12 5 P2,,/PZs8 2 1.0, with 0.56 as a compromise best value. Again, the fact that 

barrier penet,ration was not included in Meyer et al. might lead us to favor a 

lower best value. 

The aar~~/Zs%u abundance ratio is found from decay pr0duct.s of 241Pu. 

Ganapathy and Grossman (1976) proposed that the solar system *4nPu/*JsU a,bun- 

dance ra,tio be determined from coarse-grained Ca-Al-rich inclusions from Allende 

since they found that in ten such coarsegrained inclusions the average relative 

abundance of 21 refractory elements was unfractionated with respect to Cl 

chrondrite abundances. The advantage of these inclusions is that absolute con- 

centra,tions of these elements are some 18 times greater than t,he Cl abundances. 

Drozd et al. (1977) obtained a ratio of 0.016 at T + A from a coarse-gra,ined inclu- 

sion from Allende, which agrees well with 0.015 at T + A obtained by Podosek 

(1972) from St. Severin. Marti et al. (1977) found a Pu/Nd at,omic ratio of 

8.2 x 10~ from a coarse-grained inclusion in Allende. Burnett et al. (1982) use this 

number to find 0.0040 for Pu/U at T + A. Boynton (1978) argued that the 

apparently high Th/U ratios obtained from coarse-grained inclusions probably 

resulted from U depletion. This suggests that U abundances used by Drozd et al. 
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(Shirck 1975) may be systemically t,oo low and, thus, that we should prefer 0.004 

t.o 0.016 for the Pu/U ratio at T + A. This seems to be confirmed by the results 

of Hudson (1981) who got 0.005 from a m-analysis of St. Severin. This value is 

also corroborated by Marti et al. (1977) who proposed from analyses of achrondri- 

tic meteorites a value of 0.004. We thus choose the value suggested by the work 

of Hudson et al. (1982) of o.005~0.001. We note, however, that there is potential 

for much greater uncertainty than is included in this range. 

The decay rates we use throughout this work are X,,, = 8.47&?7 x 10mLo yr-’ 

(Fields et al. 1966) A, = 9.8485f0.0135 x IO-‘O yr-’ (Jaffey et al. 1971), 

x 258 = 1.5512+0.0017 x IO-“’ yr-l (Jaffey et al. 1971), and xL8, = 1.59$% x IO-” yr-’ 

(Linder et al. 1986). The errors on x,, and x,, are two times those quoted in 

Jaffey et al. since these authors claim systematic errors should no more than dou- 

ble their quoted errors. The quantity t,, has been well established as being 

between 4.5 Gyr and 4.6 Gyr since the lead-lead age determination of Patterson 

(1955). The best value now is the standard 4.55 Gyr (see for example Tatsumoto 

et al., 1976). 

VIII. Results 

i) Ratios of Average Nucleosynthesis Rates 

Table 2 shows the results for <+>,~/c$>~~ as calculated from equation (5.7) 

for A=O.OGyr, O.lGyr, and 0.2Gyr. Table 3 shows the results for <$>o,d<$>OJ 

as calculated from equation (5.9). The numbers in Table 3 can be directly com- 

pared with those in Table 1 of Reeves and Johns (1976). 
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The numbers in Table 2 are the maximum values for the ratios and are all 

relatively close to 1.0, which suggests that $e” was roughly steady (to within a 

factor of two or so) over most of T. Errors allow these numbers to vary by a fac- 

tor of 3, except for the Pu/U ratio, which is extremely sensitive t,o A and to 

uncertainties in its input data and, consequently, varies from 1.0 by as much as a 

factor of 16. 

The numbers in Table 3 for T=2.2 Gyr are the minimum va,lues for the 

ratios. Except for Pu/U, these are also within a factor of two or three of 1.0, 

which again suggests tie” was roughly steady over most of T. The other numbers 

in Table 2, for T=5.OGyr, lO.OGyr, and lS.OGyr, show even better agreement 

with the idea of rough constancy of tie”. We thus conclude that $e” was constant 

over T to within a factor of two or three, except perhaps for the last events 

which produced the “‘Pu that we infer was present at t=T. We note, however, 

that the large range for the Pu/U ratio comes from a large range in the *‘Pu 

input data; hence, we should expect much better numbers when the Pu/U pro- 

duction ratio is better determined. 

ii) tJT 

From Table 2, we can assign maximum values to the numbers r(i,l) defined 

in section V. We take for i=l Z8*Th, for i=2 =@CJ, for i=3 u6U, and i=4 for *“Pu. 

Allowing for the extreme values, we find r(l,l)=l.O, r(2,1)=2.49, r(3,1)=4.96, 

and r(4,1)=40.5. From equation (6.4) then we get an absolute maximum 

t,/T = 0.68. If we do not include r(4,l) because of the uncertainties in the *“PII 

data, we find a maximum t,/T = 0.63. If we use equation (6.9), the t,/T from the 
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single st,ep function, and r(2,1)=2.49, we find t,/T = 0.61. Finally, if we again use 

equation (6.9), but this time for the U/U pair, we find t,/T = 0.59. Since the U/U 

time scales are the optimal ones for exploring overall Galaxy evolution, we prefer 

0.59 as the upper limit on t,/T. 

From Table 3 for T=l.6 Gyr, we get the following minimum values for the 

r(i,l)‘s: r(l,l)=l.O, r(2,1)=0.59, r(3,1)=0.22, and r(4,1)=0.035. To use equation 

(6.4), we take r(3,3)=1.0 and r(4,3)=0.16, that is, our restricted set of chronome- 

ters. These numbers give us t,/T = 0.45. From equation (6.9) and r(2,1)=0.59, 

we find t,/T = 0.43. From equation (6.9) and use of r(3,2) in place of r(2,1), we 

find t,/T = 0.38. The agreement of the first two of these limits leads us to favor a 

lower t,/T of 0.43. 

To summarize, then, our range is 0.43 ( t,/T 5 0.59 

iii) L and T 

The lower limit on (AKzs2 - A) is 2.2 Gyr. From the lower limit on t,/T of 

0.43 and A 5 0.2 Gyr, we find T 2 3.9Gyr or T w 2 8.7Gyr. When we use equation 

(6.12), r(2,1)=0.56, and a=0.43, the limit on To,, becomes TGalz8.9Gy~. Using 

equation (6.12), r(3,2)=0.30, and a=0.43, we End TGd 2 8.4~yr. Higher moment 

terms thus increase the lower limit on T M by only 2% or so from the single event 

age corrected for t,/T = 0.43. 

Tables 4 and 5 show values of L, T, and T oA, as calculated from equations 

(7.6) and (4.17), for values of t,/T from 0.2 to 0.8. The values in Table 4 come 

from an R( 187,187)=1.14. The values in Table 5 come from an 

R(187,187)=1.23, which is the extreme value allowed by the Arnould et al. (1984) 
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value of 1.. From Table 4, we End L s 0.13 for t,/T = 0.59, which indicates that 

the Re/Os pair is long-lived to better than 13%. We also End for t,/T = 0.59 that 

T 5 23.3 Gyr. This yields Ta ,S 28.1Gyr. From Table 5, we End T,, s 46.3 Gyr. An 

upper limit of 46.3, or even of 28.1 Gyr, is not particularly useful. We do note, 

however, that for t,/T = 0.50, we get TG,, s 2XOGyr for R(187,187)=1.14. An 

upper limit of 23.0 Gyr would be a fairly useful number since it is near the Emits 

imposed by Thielemann et al. (1983b). 

Because of the uncertainties in R(187,187), we may ask whether the Th/U 

pair might give us a better upper limit. Using an upper limit on AZ= of 5.5 

Gyr, we End no convergence of equation (4.16) to fourth order in L. We thus con- 

clude that Th/U cannot be considered a long-lived pair since L is greater than or 

comparable to 1 for the upper limit on AEzse As a consequence, any upper limit 

on TGd derived from Th/lJ will be model-dependent. 

From equation (6.11) R(238,232)=1.79, and the upper limits on the r(i,l)‘s 

(but not including r(4,l) because of the uncertainties in the Pu/U pair), we End 

Teal s 362Gyr. From equation (6.12) r(2,1)=2.49, and a=0.59, we find 

TGd s 23.6 Gyr, which lowers the Re/Os upper limit of 27.1 Gyr. We note that 

using Azm = 5.5 Gyr gives TGd = 18.0 Gyr in the single event model plus correc- 

tion for t,/T = 0.59. Higher moment terms thus increase the Th/U upper limit on 

T by 42% from 13.2 Gyr to 18.8 Gyr. Clearly the Th/U pair is not long-lived in 

this case. 

To summarize, we End a model-independent range 8.7 Gyr 5 TGd 5 28.1Gyr. 

Again we must emphasize that uncertainties in R(187,187) do not allow us to 
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claim this upper limit as absolutely firm, despite its large value. The more 

model-dependent equations of section Vfiii narrow this range somewhat to 

8.9 Gyr 5 TGd 2 23.6 Gyr. 

IX. Conclusions 

Qualitative conclusions we may derive from this work are that I) upper and 

lower limits on the age of the Galaxy can be obtained that depend only on t,/T 

but are independent of any other model-dependent information and of the major 

uncertainties in cosmochronological input data, 2) cosmochronological input data 

itself can provide the limits on t,/T necessary to obtain the limits on the age of 

the Galaxy via a method which depends only on the lifetimes of the chronometers 

in question, not on any biases about the form $eY should take, and 3) the cosmo- 

chronology input data can Lso give rough constraints on the overall constancy of 

tie” over T. 

Quant,it,at,ivcly, we find limits for t,/T of 0.43 s t,/T ~0.5g. From these 

numbers we find t.hat we can place a lower limit on T, of 8.7 Gyr and an upper 

limit of 28.1 Gyr. The uncertainty in R(187,187) does not allow us to claim this 

upper limit as absolutely firm, however. We also find quantitatively that tie” 

probably did not vary by more than a factor of three over most of T but that 

uncertainties in the short-lived chronometers do not preclude the possibility of 

large changes in tie” for t near T. 

The range for To,, that we find is discouragingly large. This really reflects, 

however, the uncertainties in the cosmochronological data rather than any real 
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failing of the methods described in this paper. In particular, we note that calcu- 

lation of c$>~,,/<$>~~ depends on R(i,j), not on ln(R(i,j)) as does the calculation 

of AT; thus, parameters giving constraints on Galaxy chemical evolution are 

quite sensitive to errors in the production and abundance ratios. The upper lim- 

its we obtain are also sensitive to the extremely uncertain parameter R(l87,187). 

We can expect better limits when these input data errors are narrowed. Indeed, 

we have noted that if input data improve to give t,/To0.50, as expected from the 

work of Hainebach and Schramm (1977), we find a useful upper limit on Toll of 

about 23.0 Gyr. 

For comparison with our model-independent range, we may consider some 

model-dependent age ranges. In particular, we can determine ranges on TCpl for 

our range on AEm of 1.8 to 5.5 Gyr by looking at Hainebach and Schramm’s 

figures 2, 4, and 5 which represent their solutions to the standard Galaxy evolu- 

tion model (Tinsley lQ75), the metal-enhanced star formation Galaxy evolution 

model (Talbot and Arneit 19733, and the halo-disk Galaxy evolution model 

(Ostriker and Thuan 1975), respectively. For the standard model we find a range 

for To.1 of 8.7 to 18.8 Gyr. For the metal-enhanced model we find the range 9.0 

to 18.5 Gyr. Finally, for the halo-disk model we find the range 8.7 to 18.5 Gyr. 

These ranges are certainly narrower tha,n our range; however, they are dependent 

upon the models and on the paramet,ers chosen for those models. Our range is 

independent of such considerations. 

We should note in closing that an absolutely accurate upper limit is prob- 

ably not attainable from this method since use of equation (3.10) and the lab rgRe 
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decay rate can only give an upper limit on Azlm. Once we obtain the best possi- 

ble data for the Re/Os pair, we might be able to improve our upper limit on TG,, 

through detailed Galaxy evolution models which can determine the amount of 

astration of 18?Re and, hence, the true value for the effective ““Re decay rate. 

Alternatively, we may use the Th/U pair. As we have shown, however, this pair 

cannot be considered long-lived in the calculation of upper limits for Ta; hence, 

any upper limit we derive from it will also be model-dependent. It will be a sign 

of great progress, however, when our major concern is the model-dependency of 

our upper limits rather than uncertainties in the data. 
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Appendix 

In order to End maximum values for fin/T” when n is odd, we note that the 

factor (t - t,)D in the integral in equation (3.8) is odd about t=t,. To get the larg- 

est ~1. possible, then, we want the contribution from t<t, to be aa small as possi- 

ble and the contribution from t>t, to be as large as possible. We have found in 

section VIIIi that +e’, and hence b(t), probably did not vary by more than a factor 

of three (except possibly over a very small time scale just before t=T). Since 

b(t)=I/T for a steady synthesis solution (see equations (3.1) and (3.2)), we can 

safely assume that @(t), 1/3T for t<t, and 4(t) (3/T for t>t,. From these 

numbers, we find 

$ ( p (1 - $)’ - & (!x)‘. 

With the lower bound on t,/T of 0.43 from section VIIIii, we End 

2, 1 
TS -13.1. (A.21 



37 

Table 1 

Pair WY~-‘1 WY~-‘) R(h) A?iVyd 

187Re/‘870s 0.0162(+0.0003,-0.003) -_-- 1.03-1.?3 1.8-13.4 

=‘T h /‘““v 0.0495(+0.0000,-0.000) 0.1551(+0.0002,-0.0002) 0.67(+0.11,-0.11) 3.8(+1.7.-1.4) 

2YJ/Yl 0.985(+0.009,-0.009) 0.1551(+0.0002,-0.0002) 4.7(+1.3,-0.9) 1.9(+0.3,-0.3) 

=%pv 8.47(+0.27,-0.27) 0.1551(+0.0002,-0.0002) 112(+138,-92) 0.57(+0.12,-0.21) 
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Table 2. Maxlmum <+>ij<$>5i’~ 

Pair A=O.O Gyr A=O.l Gyr A=O.2 Gyr 

U/Th 2.09(+0.35,-0.46) 2.11(+0.36,-0.46) 2.13(+0.36,-0.47) 

u/u 1.36(+0.32,-0.29) 1.48(+0.35;0.32) 1.61(+0.38,-0.35) 

h/U 0.49(+2.41;0.28) 1.12(+5.73,-0.65) 2.56(+13.7,-1.52) 



Table 3. <ti>a,J<$>oj 

Pair A(GY 4 T=2.2 Gyr T=5.0 Gyr T=lO.O Gyr T=15.0 Gyl 

U/Th 0.0 0.75(+0.13,-0.16) 0.85(+0.14.-0.19) 1.03(+0.18,-0.23) 1.21(+0.21,-0.27) 

0.1 0.75(+0.13,-0.16) 0.86(+0.15,-0.19) 1.05(+0.18,-0.23) 1.23(+0.21.-0.27) 

0.2 0.76(+0.13,-0.17) 0.87(+0.15,-0.19) 1.06(+0.18,-0.23) 1.24(+0.21,-0.27) 

u/u 0.0 0.44(+0.10,-0.10) 0.74(+0.17,-0.16) 1.07(+0.25;0.23) 1.23(+0.29,-0.27) 

0.1 0.48(+0.11,-0.10) 0.80(+0.19.-0.17) 1.16(+0.28;0.25) 1.33(+0.32,-0.29) 

0.2 0.52(+0.12,-0.11) 0.87(+0.21,-0.19) 1.27(+0.30,-0.?7) 1.45(+0.34.-0.31) 

Pu/U 0.0 0.14(+0.68,-0.08) 0.26(+1.27,-0.15) 0.38(+1.87,-0.22) 0.44(+2.16,-0.25) 

0.1 0.32(+1.62;0.19) 0.60(+3.04,-0.35) 0.88(+4.47,-0.51) 1.01(+5.14,-0.58) 

0.2 0.74(+3.87;0.44) 1.38(+7.24,-0.82) 2.02(+10.6,-1.19) 2.31(+12.2,-1.37) 



Table 4. Rem&s for R(187,187) = 1.14’ 

6. t” 
T ( T(Gyr) TG~GY 4 r f -WY d TcdGyr) 

0.2000 0.0276 10.9 15.7 

0.2100 0.0284 11.0 15.8 

0.2200 0.0292 11.2 16.0 

0.2300 0.0300 11.3 16.1 

0.2400 0.0308 11.5 16.3 

0.2500 0.0317 11.6 16.4 

0.2600 0.0327 11.8 16.6 

0.2700 0.0337 12.0 16.8 

0.2890 0.0347 12.1 16.9 

0.2900 0.0357 12.3 17.1 

0.3000 0.0369 12.5 17.3 

0.3100 0.0380 12.7 17.5 

0.3200 0.0393 12.9 17.7 

0.3300 0.0406 13.1 17.9 

0.3400 0.0420 13.3 18.1 

0.3500 0.0434 13.6 18.4 

0.3600 0.0449 13.8 18.6 

0.3700 0.0465 14.0 18.8 

0.3800 0.0482 14.3 19.1 

0.3900 0.0500 14.6 19.4 

0.4000 0.0519 14.8 19.6 

0.4100 0.0539 15.1 19.9 

0.4200 0.0560 15.4 20.2 

0.4300 0.0583 15.7 20.5 

0.4400 0.0607 16.0 20.8 

0.4500 0.0633 16.3 21.1 

0.4600 0.0661 16.7 21.5 

0.4700 0.0690 17.1 21.9 

0.4800 0.0722 17.4 22.2 

0.4900 0.0756 17.8 22.6 

0.5000 0.0792 18.2 23.0 

0.5100 0.0832 

0.5200 0.0875 

0.5300 0.0921 

0.5400 0.0972 

0.5500 0.1027 

0.5600 0.1087 

0.5700 0.1153 

0.5800 0.1227 

0.5900 0.1308 

0.6000 0.1399 

0.6100 0.1501 

0.6200 0.1616 

0.6309 0.1747 

0.6400 0.1898 

0.6500 0.2073 

0.6600 0.2279 

0.6700 0.2527 

0.6800 0.2831 

0.6900 0.3216 

0.70@0 0.3727 

0.7100 0.4464 

0.7200 0.5751 

0.7300 ****** 

0.7400 ****** 

0.7500 ****** 

0.7600 **a*** 

0.7700 ****** 

0.7806 **a*** 

0.7900 ****** 

0.8000 *+**** 

18.7 23.5 

19.2 24.0 

19.6 24.4 

20.2 25.0 

20.7 25.5 

21.3 26.1 

21.9 26.7 

22.6 27.4 

23.3 28.1 

24.1 28.9 

24.9 29.7 

25.8 30.6 

26.8 31.6 

27.9 32.7 

29.2 34.0 

30.5 35.3 

32.1 36.9 

33.9 38.7 

36.0 40.8 

38.7 43.5 

42.2 47.0 

47.6 52.4 

’ Asterisks indicate that there is no conver- 

gence of equation (7.6) to fourth order in L. 
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Table 6. Results for R(187,187) = 1.23’ 

L L 
r L T(Gyr) TG&Y~) r c 

0.2cOo 0.0458 17.5 22.3 

0.2100 0.0472 17.7 22.5 

0.2200 0.0485 18.0 22.8 

0.2300 0.0500 18.2 23.0 

0.2400 0.0515 18.5 23.3 

0.2500 0.0530 18.8 23.6 

0.2600 0.0547 19.0 23.8 

0.2700 0.0564 19.3 24.1 

0.2800 0.0582 19.6 24.4 

0.2900 0.0601 19.9 24.7 

0.3000 0.0621 20.3 25.1 

0.3100 0.0643 20.6 25.4 

0.3200 0.0665 20.9 25.7 

0.3300 0.0688 21.3 26.1 

0.3400 0.0713 21.7 26.5 

0.3500 0.0740 22.1 26.9 

0.3600 0.0768 22.5 27.3 

0.3700 0.0797 22.9 27.7 

0.3800 0.0829 23.3 28.1 

0.3900 0.0862 23.8 28.6 

0.4000 0.0898 24.3 29.1 

0.4100 0.0937 24.8 29.6 

0.4?00 0.0977 25.3 30.1 

0.4300 0.1021 25.8 30.6 

0.4400 0.1069 26.4 31.2 

0.4500 0.1120 27.0 31.8 

0.4600 0.1175 27.6 32.4 

0.4700 0.1234 28.3 33.1 

0.4800 0.1299 29.0 33.8 

0.4900 0.1370 29.8 34.6 

0.5coo u.1447 30.6 35.4 

0.51Ml 0.1532 

0.5200 0.1626 

0.5300 0.1731 

0.5400 0.1847 

0.5500 0.1979 

0.5600 0.2127 

0.5700 0.2298 

0.5800 0.2495 

0.5900 0.2728 

0.6000 0.3007 

0.6100 0.3350 

0.6200 0.3789 

0.6306 0.4386 

0.6400 0.5307 

0.6500 0.7841 

0.6600 a***** 

0.6706 ****** 

0.6806 a***** 

0.6900 ****** 

0.7000 ****** 

0.7100 ****** 

0.7200 ****** 

0.7300 ****** 

0.74Ou ****** 

0.7500 ****** 

0.7600 ****** 

0.7700 ****** 

0.7800 a***** 

0.7900 ****a* 

0.8003 ****** 

r(Gyr) TG~GY~) 

31.4 36.2 

32.3 37.1 

33.3 38.1 

34.4 39.2 

35.6 40.4 

36.8 41.6 

38.2 43.0 

39.7 44.5 

41.5 46.3 

43.4 48.2 

45.7 50.5 

48.5 53.3 

51.9 56.7 

56.8 61.6 

68.1 72.9 

’ Asterisks indicate there is no convergence in 

equation (7.6) to fourth order in L. 
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Captions 

Figure 1. A schematic diagram showing the effective nucleosynthesis rate qk” as 

a function of time. T is the total duration of nucleosynthesis and t,, is the mean 

time for the formation of the elements. A is the time interval between the end of 

nucleosynthesis and solidification of solar system bodies. t,, is the age of the solar 

system solid bodies. The total age of the elements is T + A + t,,. 
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